想必有用很多人在面对教案的写作都会感到发愁吧,凭借计划好教案,能够更好地依照具体情况对教学进程进行规律改善,好老师范文网小编今天就为您带来了小学数学近似数教案7篇,相信一定会对你有所帮助。
小学数学近似数教案篇1
教学目标:
1、通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
2、掌握用“四舍五入”法截取商的近似数的一般方法。
3、在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
教学重点:
掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:
理解求商的近似数与积的近似数的异同。
教学准备
有关的课件。
教学过程
一、复习引入:
1.按照要求写出表中小数的近似数。(ppt课件出示题目。)
保留整数保留一位小数保留两位小数保留三位小数
2.求出下面各题中积的近似值。(ppt课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
二、探究新知:
1.学习例6。
(1)出示例6题目信息。(ppt课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或ppt课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或ppt课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或ppt课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(ppt课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(ppt课件演示例6精确到“分”的计算过程。)
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(ppt课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(ppt课件演示。)
(3)引导学生交流、概括。(ppt课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
三、巩固应用:
1.基本练习。
完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
2.提高练习。
判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
小学数学近似数教案篇2
课题:
近似数第8课时总第课时
教学目标:
1、结合生活中的例子,理解精确数和近似数的含义。
2、掌握用“四舍五入”的方法求一个数的近似数,学会用“四舍五入”的方法省略“万”或“亿”后面的尾数,求出它的近似数。
3、引导学生观察、体验数学与生活的密切联系,培养学生主动探究的精神和应用数学的意识。
教学重点:
能正确判断生活中的近似数和精确数,会用“四舍五入”的方法求一个数的近似数。
教学难点:
灵活运用“四舍五入”的方法求一个数的近似数。
教学准备:
课件
教学过程:
一、谈话引入
师:我今年三十五岁了,度过了一万多个日日夜夜。
想一想:在老师介绍自己的这两个数字中,你认为哪个数字描述得更精确?为什么?
引导学生畅所欲言,在学生交流的过程中教师进行实时指导,引导学生得出:三十五岁更精确,一万多个日日夜夜是个近似(大概、大约)的数。
导入:今天这节课我们就一起来学习和近似数有关的知识。(板书课题)
二、交流共享
(一)认识近似数
1、课件出示教材第21页例题6情境图。
2、初步感知。让学生读一读两个情境中的信息,联系情境中的内容想一想:如果让你把划线的四个数字分一分,你想怎样分?为什么?学生独立思考后,教师组织交流。
3、加深理解。
(1)思考:你知道上面哪些数是近似数吗?
教师在学生思考、交流的基础上明确:220万和1902万是近似数;生活中一些事物的数量,有时不需要用精确的数表示,而只用一个与它比较接近的数来表示,这样的数是近似数。
(2)让学生结合具体例子说说生活中的近似数。
(二)求一个数的近似数
1、课件出示教材第21页例题7“20xx年某市人口情况统计表”。让学生观察表格中的数据,并读出这几个数。
2、借助直线理解找一个数的近似数的方法。
(1)教师出示一条直线:
38万39万
(2)在直线上描出表示男性与女性人数的点。
提问:表示男性与女性人数的点大约在直线的什么位置?分别把它们描出来。
学生尝试在教材的直线上进行描数。
教师投影学生完成的结果:
38万38420438668539万
(3)观察直线,探究找近似数的方法。
提问:观察直线上384204和386685这两个数,它们各接近多少万?
学生独立思考后,小组交流。教师巡视,了解学生的交流情况。
组织全班交流。
鼓励学生各抒己见,学生可能会有以下两种思考方法:
方法一:384204在385000的左边,接近38万;386685在385000的右边,接近39万。
方法二:384204千位上是4,比385000小,接近38万;386685千万位上是6,比385000大,接近39万。
教师对以上两种方法都应给予肯定。
3、介绍“四舍五入”的方法。
(1)教师介绍用“四舍五入”的方法求一个数的近似数。
用“四舍五入”的方法求一个数的近似数,要把这个数按要求保留到某一位,并把它后面的尾数省略。尾数的最高位上的数如果是4或比4小,就把尾数的各位都改写成0;如果是5或比5大,要在尾数的前一位加1,再把尾数的各位改写成0。
(2)用“四舍五入”的方法求出男性和女性人数的近似数。
先让学生独立写,再组织汇报交流,交流时让学生说说是怎样运用“四舍五入”的方法来求它们的近似数的。
教师根据学生汇报板书:
384204≈380000
386685≈390000
4、完成教材第22页“试一试”。
(1)课件出示题目。
(2)让学生独立思考后,在小组内交流汇报。
(3)提问:怎样将一个数改写成用“万”或“亿”作单位的近似数?
学生交流讨论,教师归纳。
三、反馈完善
1、完成教材第22页“练一练”。
这道题是结合生活情境来区分精确数和近似数。其中,56785和1617是准确数,4600000000、2000000和3000000是近似数。
2、完成教材第24页“练习四”第5~10题。学生独立完成后集体汇报。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
小学数学近似数教案篇3
教材分析:
“近似数”是北师大版小学数学第七册第一单元“认识更大的数”中的第五课。这部分内容既丰富了对大数的认识,又是对后续学习除法“试商”的基础。另外,近似数在生活中有着广泛的应用,当很难得到或不需要得到精确数,或是用大数描述事物时,人们经常会选择近似数。因此,无论在生活中还是在知识的衔接上近似数都显得至关重要。
学生收到前面计算教学中估算的影响,以及学生自身的经验积累,很多学生在课前已经可以凭借数感找出万以内数的近似数,也有一部分学生了解甚至可以用“四舍五入”法来求大数的近似数。但是大部分学生对“四舍五入”法只是一个模糊的认识,对于“四舍五入”法具体是什么,它的道理是什么,什么情况下运用“四舍五入”法都不是十分清楚。
四年级的学生已经进入了小学中年级段,具有一定的学习经验和合作学习的能力。
教学目标:
1、通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。
2、借助数线,较直观地感知“四舍五入”法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。
3、经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数,培养数感。
教学重点:
经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数。
教学难点:
经历探索求近似数的过程。
教学方法:
合作学习法分析归纳法
教学策略:
小组合作情境创设
教学过程:
一、情境创设,分类感受精确数和近似数。
1、观看一段国庆60周年阅兵视频,说一说有什么感受?
师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。
2、课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。
3、仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?
组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。
师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?
学生用自己的语言说一说。可能会说是准确的数,估出来的数。
师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。
4、读一读以下的数据,哪些是精确数,哪些是近似数吗?
小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。
5、你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。
师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。
?设计意图:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】
二、合作学习,自主探究。
(一)借助数线,直观感受“四舍五入”法求近似数的道理。
1、师:巨幅国画《江山如此多娇》的实际面积是18000平方米,但报道中称“近2万平方米”,这里的“2万”是如何得到的?
同桌交流,指名说说想法,学生可能会说18000接近2万,所以用2万来表示。
2、结合直观的数线图,分析“18000平方米”称为“近2万平方米”的原因。
师:18000介于整万数1万和2万之间,由于18000千位上是“8”,所以可以把千位上8直接去掉变成0后向万位进1,就得到了近似数“2万”。
介绍18000约等于2万,用“≈”表示,写作:18000≈2万全班读一读。
3、在数线上标出11000,120xx,13000,14000,15000,16000,17000,19000这几个数,请学生尝试分别说出它们的近似数及想法。
师:15000这个数约等于多少呢?
学生可能觉得1万可以,2万也可以,因外它刚好在中间。
师:15000离1万和离2万的距离是一样的,但为了方便记录,我们认为规定15000≈2万。
课件上将约等于1万和约等于2万的数进行对比,让学生观察,分析归纳。
师:请同学们对比两组数据,仔细观察,说说你有什么发现,能得到什么结论?请同桌互相讨论,教师巡视指导了解情况。
学生汇报交流,学生可能会发现以15000为分界线,11000,120xx,13000,14000接近1万,16000,17000,18000,19000接近2万。
教师引导学生观察千万上的数,当千位上的数是1、2、3、4时,近似数是1万,当千位上的数是5、6、7、8、9时,近似数是2万。
教师借机在黑板上板书:0、1、2、3、4舍;5、6、7、8、9入,介绍“四舍五入”法。
?设计意图:结合数线图,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,将四舍五入的本质清晰地展现出来,培养学生的数感。】
(二)合作学习,探究“四舍五入”法求一个数的近似数。
1、参加国庆阅兵的精确人数是233482人,在下图中找到这个数的大致位置,说一说“约20万人”,这个数是怎样得到的?
合作要求:
1.同桌2人一起学习,共同完成学习任务。
2.学习时,每人都要说一说自己的想法,并将讨论的结果填在学习卡上。
3.组织简单、清晰的语言准备全班汇报。
教师巡视,了解小组讨论的情况,并对有困难的小组给予指导。
2、全班交流。生可能想法:在数线图上标出,发现233482接近20万,;或者233482比25000小,所以近似于20万;直接用四舍五入法,看万位上的数是3,小于5,所以直接把十万后面的尾数“33482”舍去变成5个0,得到近似数20万。
请多组的学生表达自己的想法,只要说得有道理,给予鼓励。
3、教师小结:四舍五入到十万位,关键看万位。
4、如果将233482四舍五人到万位、千位、百位、十位,近似数分别是多少,怎样得到的?小组内讨论,再全班交流,帮助直观感知求近似数的方法。
5、引导学生初步概括方法,用自己的语言说说:怎样用四舍五入法求近似数?
?设计意图:新课标指出,学生应当有足够的时间与空间经历探索的过程,引导学生独立思考、主动探索、合作交流,使学生掌握求近似数的方法,培养学生的合作能力,发展学生的思维。】
三、巩固练习
1、读一读下面的数据,哪些是精确数,哪些是近似数?(教材第11页练一练第一题)
鼓励学生通过自主阅读与分析,找出精确数和近似数,加深认识,并感受到近似数在现实生活中的广泛应用。
2、华山是我国的五岳之一,海拔约2155米,在下图上标一标,四舍五入到百位大约是多少米?
学生独立完成,有些学生在数线上找点时会遇到困难,教师适时指导,帮助学生通过数线进一步感受四舍五入到百位,要看十位上的数。
3、按要求填表。
提醒学生认真看要求,仔细数数位。特别对29957四舍五入到百位、千位、万位重点指导。
?设计意图:巩固练习是帮助学生掌握新知、形成技能、发展智力培养能力的重要手段。通过三道练习题,加深对近似数的认识,感受近似数在现实生活中的广泛应用,并能用所学的四舍五入法求近似数。】
四、课堂总结
这节课你学到了什么?请学生说说这节课的收获。
师:这节课我们经历了探索求近似数的过程,会用“四舍五入”法求一个数的近似数,同时知道近似数的书写格式。希望同学们能留意生活,去感受近似数在生活中的广泛应用。
板书设计:
近似数
0、1、2、3、4舍18000≈20000
四舍五入法
5、6、7、8、9入233482≈200000
小学数学近似数教案篇4
教学内容:
教材p32例6及练习八第1、2、3、8题。
教学目标:
1.知识与技能:能理解商的近似数的意义。
2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。
教学重点:
掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
教学难点:
根据题意正确求出商的近似数。
教学方法:
注重新旧知识的迁移,引导学生自主学习、总结。
教学准备:
多媒体。
教学过程:
一、复习导入
复习旧知:(出示如下题目)
1.用“四舍五入”法将下面的数改写成一位小数。
8.769 3.452 12.71 18.64
2.计算下面各题,得数保留两位小数。
2.43×4.67 12.15×3.41
订正答案,并通过问题:你是用什么方法求这些数的近似数?
(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)
引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)
二、互动新授
1.出示教材第32页例6情境图。
阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?
引导学生自主列算式,并试着计算:19.4÷12
学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?
通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。
教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)
然后再引导学生想一想:算到分和角时分别需要保留几位小数?
(算到分要保留两位小数,算到角就要保留一位小数。)
师引导学生思考并讨论:除的时候应该怎么算?
小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书
2.提问:说一说如何求商的近似数?
让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。
3.引导学生比较求商的近似值和求积的近似值的异同点。
小组讨论后发言:相同点:都是用“四舍五入”法求近似数。
不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。
师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。
三、巩固拓展
1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。
四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?
引导学生归纳
1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。
作业:教材第36~37页练习八第1、2、3、8题。
板书设计:
商的近似数
求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
小学数学近似数教案篇5
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人。
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。
(6)分组合作学习,填表
在下表的空格里按照要求填出近似数
保留整数
保留一位小数
保留两位小数
保留三位小数
3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.
(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.
(2)做一做.
把248000改写成用“万”作单位的数.
4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)“做一做”第2题.
把750000000改写成用“亿”作单位的数.
“做一做”第3题.
把34562800000改写成用“亿”作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……
2.填空.
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.28 12.71 4.86 7.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数9.9564
0.9053
1.4639
5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.
(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业.
1.把下面各小数四舍五入.
(1)精确到十分位:3.47 0.239 4.08
(2)精确到百分位:5.344 6.268 0.402
2.把下面各数改写成用“亿”作单位的数.
(1)保留一位小数:3672800000 648500000
(2)保留两位小数:4853900000 288160000
板书设计
求一个小数的近似数
例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.953≈2.95
2.953≈3.0
2.953≈3
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例 2 61581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3 573000000吨=5.73亿吨 .5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
数学教案-求一个小数的近似数
小学数学近似数教案篇6
一、教学目标
(一)知识与技能
通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
(二)过程与方法
掌握用“四舍五入”法截取商的近似数的一般方法。
(三)情感态度和价值观
在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
二、教学重难点
教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:理解求商的近似数与积的近似数的异同。
三、教学准备
多媒体课件。
四、教学过程
(一)复习旧知,揭示课题
1.按照要求写出表中小数的近似数。(ppt课件出示题目。)
2.求出下面各题中积的近似值。(ppt课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
?设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。
(二)创设情境,自主探究
1.教学教材第32页例6。
(1)出示例6题目信息。(ppt课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或ppt课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或ppt课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或ppt课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(ppt课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(ppt课件演示例6精确到“分”的计算过程。)
?设计意图】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(ppt课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(ppt课件演示。)
(3)引导学生交流、概括。(ppt课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
?设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。
(三)巩固应用,内化方法
1.基本练习。
(1)完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
(2)完成教材第36页练习八第3题。
①学生独立练习,教师巡视,适时指导。
②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。
2.提高练习。
判断对错。(对的`在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
3.解决问题。
(1)完成教材第36页练习八第2题。
①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)
②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。
③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。
(2)完成教材第36页练习八第4题。
①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。
②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。
③完成第(2)问:提出其他数学问题并解答。
?设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。
(四)课堂小结,畅谈收获
这节课你学会了什么?有什么收获?
(五)作业练习,及时巩固
1.课堂作业:教材第36页练习八第1题。
2.课外作业:教材第36页练习八第5题。
小学数学近似数教案篇7
教学目标:
1、使学生掌握求小数乘法的积的近似数的方法。
2、使学生经历求小数乘法的积的近似数的过程。
3、使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。
教学重点:
掌握求小数乘法的积的近似数的方法。
教学难点:
根据要求与实际需要取积的近似数。
教学准备:
多媒体课件。
教学过程:
一、基础训练
1.436保留整数、一位小数、两位小数分别是多少?
15.7394精确到个位、十分位、百分位、千分位分别是多少?
一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?
二、导入新课
师:同学们你们知道什么单位的嗅觉最灵敏吗?
生:狗,人们用狗来做侦探,看家。
三、进入新课
师出示教材11页情境图
师:从图上你都看到了什么?
生:描述画面内容。
师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。
投影出示例6
生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。
1、尝试题
师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)
2、自学课本
有困难的同学借助课本来学习
3、尝试练习
生:独立完成在练习本上。指名学生板演。
0.049×45≈2.2(亿个)
4、学生讨论
师:充分展示学生出现的情况,组织学生讨论,探究。
强调:横式后面写的是近似数所以要用约等号而不用等号。
明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?
生:看千分位是几,千分位上是5舍去后向前一位进一。
讨论:怎样求积的近似数?
5、教师讲解
小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。
四、巩固练习
1.11页做一做第1题。
求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)
2.11页做一做第2题。
明确为什么保留两位小数?(生活中没有比分更小的钱币)
五、课堂作业
练习三1~3题。
六、小结:谈谈收获。
练习题
1、计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
2、一种大米的价格是每千克3.85元,买2.5千克应付多少钱?
练习三
1、按要求保留小数数位
(1)保留一位小数
1.2×1.40.37×8.43.14×3.9
(2)保留两位小数
0.86×1.22.34×0.151.05×0.26
2、一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)
3、世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)
小学数学近似数教案7篇相关文章: