教案通常包括教学目标,教材选择,教学方法和评估策略等重要要素,教师会考虑学生的年龄和发展水平,以确保教案与学生的认知能力和兴趣相符,从而提高教学效果,好老师范文网小编今天就为您带来了同底数的乘法教案6篇,相信一定会对你有所帮助。
同底数的乘法教案篇1
教学设计思想
同底数幂的乘法是幂的运算性质之一,它和幂的另两个运算性质幂的乘方和积的乘方,都是学习整式乘法的基础,在幂的三个运算性质中,同底数幂的乘法性质是最基本的。学好同底数幂的乘法性质的基础是正确理解底数、指数、幂的概念和乘方的意义。教学时做到不要生硬地提出问题,应力求顺乎自然、水到渠成。讲课要注意联系过去尚不甚巩固的知识,将新旧知识有机地融合在一起。
教学目标
知识与技能:
熟记同底数幂的运算性质(或称法则),会结合实际问题进行基本运算;
发展推理能力和有条理的表达能力。
过程与方法:
通过自己的计算和归纳概括,得到同底数幂的运算性质(或称法则);
情感态度价值观:
在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心。
教学重点和难点
教学重点:同底数幂的乘法运算法则及其应用。
教学难点:法则中有关字母的广泛含义及法则的正确使用。
教学方法:
引导启发法
教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用。
教学媒体
多媒体
课时安排
1课时
教学过程
(一)知识回顾:
(1)乘方的意义
(2)指出下列各式的底数与指数:
(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.
其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?
(二)情境设置:
问题
一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
启发、点拨学生列出算式,如何计算1012103呢?
同底数的乘法教案篇2
教学目标
在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。
在推导法则的过程中,培养观察、概括与抽象的能力。
通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点难点
重点
同底数幂相乘的法则的推理过程及运用
难点
同底数幂相乘的运算法则的`推理过程
教学过程
一、温故知新
1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)
2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)
3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?
学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。
二、新课讲解
探究新知
你能计算出 吗?
学生解答,教师板书
那么 等于多少呢?更一般的, 等于多少呢?
学生回答,教师板书
你发现运算的方法了吗?
师生共同概括归纳出同底数幂乘法的法则:
同底数幂相乘,底数不变,指数相加。
用公式表示是: (、n都是正整数)
动脑筋
当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?
学生思考并讨论解答,最后教师总结: (,n,p都是正整数)
三、典例剖析
例1 计算:(1) ;(2)
分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。
例2 计算:(1) ;(2)
让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。
例3 计算:(1) ;(2)
学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。
四、课堂练习
基础训练:
1.计算:
(1) ;(2) ;(3) ;(4)
2.计算:
(1) ;(2) ;(3) ;(4)
(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)
提高训练
3. 计算 ;(2)
4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作. 随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。
(用以提升学生运算的灵活性,提高学习兴趣。)
五、小结
师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)
六、布置作业
教材p40 第1题,p41 第12题
同底数的乘法教案篇3
一、教材分析
同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。
二、教学目标
知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。
过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。
情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。
三、教学重难点
教学重点:同底数幂乘法运算法则及其应用。
教学难点:同底数幂乘法运算法则的探索及灵活运用。
突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。
四、教学过程设计
本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。
第一环节旧知链接
活动内容:1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)
2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。
设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。
第二环节情境引入
活动内容:1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?
2、.计算下列各式:
(1)102×103;
(2)105×108;
(3)10m×10n(m,n都是正整数).你发现了什么?
3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)
(学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )
设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的问题,培养学生数学转化的思想及重视算理的习惯。
第三环节新知探究,归纳法则
活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?
(1)将引例中的各算式改写成乘法的字母算式。
(2)观察计算结果有什么规律?
(3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)
(4)验证你的猜想。
(5)小结归纳法则。
(小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)
同底数幂相乘,底数不变,指数相加。
am· an=am+n(m,n是正整数)
设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。
活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流
am· an· ap = am+n+p
法则应用注意事项:(1)等号左边是同底数幂相乘法。
(2)等号两边的同底相同。
(3)等号右边的指数等于左边的指数和。
(4)公式中的底数a可以表示数、字母、单项式、多项式等整式。
设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。
第四环节活学活用
活动内容一:
例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2
(3)-x3.x5(4)b2m.b2m+1
(学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)
设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。
活动内容二:
例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?
(独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)
设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。
第五环节巩固练习
活动内容:课本随堂练习
1.计算:
(1)52×57;(2)7×73×72;
(3)-x2·x3;(4)(-c)3·(-c)m.
2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?
3.解决本节课一开始比邻星到地球的距离问题.
(小组讨论、交流、展示。自主探究完成。)
设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。
第六环节课堂小结
活动内容:这节课你学到了哪些知识及哪些数学思想?
(鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)
设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。
第七环节布置作业
习题7.1a组1.b组1、2、3
设计意图:作业分层布置,因材施教,培养学生的自信心。
四、教学设计反思:
1.培养学生数学思想,让学生掌握方法
在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。
2.改进教学和评价方式,为学生提供自主探索的机会
数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的.过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。
同底数的乘法教案篇4
同底数幂的乘法
教学目标
1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;
2.在推导“性质”的过程当中,培养学生观察、概括与抽象的能力.
教学重点和难点
幂的运算性质.
课堂教学过程设计
一、运用实例 导入新课
引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?
学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?
要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)
本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.
为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.
二、复习提问
1.乘方的意义:求n个相同因数a的积的运算叫乘方,即
2.指出下列各式的底数与指数:
(1)34; (2)a3; (3)(a+b)2; (4)(-2)3; (5)-23.
其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24 呢
三、讲授新课
1.利用乘方的意义,提问学生,引出法则
计算103×102.
解:103×102=(10×10×10)+(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)
=105.
2.引导学生建立幂的运算法则
将上题中的底数改为a,则有
a3·a2=(aaa)·(aa)
=aaaaa=a5, 即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有
=am+n, 即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算? (2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用举例 变式练习
例1 计算:
(1)107×104; (2)x2·x5.
解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.
提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.
课堂练习
计算:
(1)105·106; (2)a7·a3; (3)y3· y2;
(4)b5· b; (5)a6·a6; (6)x5·x5.
例2 计算:
(1)23×24×25;(2)y· y2· y5.
解:(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8.
对于第(2)小题,要指出y的指数是1,不能忽略.
五、小结
1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
六、作业
同底数的乘法教案篇5
学习目标
1、 理解积的乘方法则。
2、 会计算积的乘方。
3、 会进行简单的幂的混合运算。
学习重难点 重点:积的乘方法则。
难点:积的乘方法则的推导过程。
自学过程设计 教学过程设计
一、看一看
1、积的乘方法则:
2、完成课堂作业部分(写在预习本上)
二、做一做:
1、看看运算过程用到哪些运算律?运算结果有什么规律?
(ab)2=(ab)(ab)=(aa)(bb)=a( )b( )
(ab)3=______________=____________=a( )b( )
(ab)n=(ab)(ab)(ab)=aaabbb=anbn
即:(ab)n=__________(n为正整数)
2、计算:
(1)(2a)3= (2) (5b)3=
(3) (xy2)2= (4) (2x3)4=
3、下面的计算对不对?如果不对,应怎样改正?
(1)b3b3=2b3
(2) x4x4=x16
(3)(a5)2=a7
(4)(a3)2a4=a9
(5)(a3)2a4=a9
(6)(ab2)3=ab6
(7) (2a)2= 4a2
(8)x3+x4=x7
(9) y22y2=2y4
(10) (a2b)3=a6b3
(11) a42a3=3a7
4、计算:
(1)(x5)2+(x2)5=___________
(2) (3102)2=___________
(3) (x3)( )x2=x14
(4) (2a2y4)3=
(5) m2m3=
(6) (a2b2)m=
(7) (2104)2=
(8) (6xy)2=
(9) (x2y)3(xy3)2=
(10) (x2y3)4(x)8(y6)2=
5、( )20xx(-3)20xx =
6、0.12530(-8)30=
7、2444(-0.125)4=
8、若xn=2,yn=5,则 (xy)n=________
9、已知 48m16m=29 求m的值
10、已知 x+y=a
求(x+y)3(2x+2y)3(3x+3y)3的值
三、想一想
你还有哪些地方不是很懂?请写出来。
_________________________________________________________________________________________________________
预习展示:
1、根据乘方的意义(幂的意义)和同底数幂的乘法法则(46)3表示什么?
2、那(46)5,(ab)3又等于什么?
由特殊的(ab)3=a3b3出发,你能想到一般的公式吗?
猜想:(ab)n=anbn
(abc)n= (n为正整数),为什么?
应用探究:
1.下列计算正确的是( )
a.
d、
2.计算下列各题
3.计算下列各题
4、用简便的方法计算:
5、木星是太阳系九大行星中最大的一颗,木星可以近似地看成球体。已知木星的半径大约是7104km,木星的体积大约是多少km3(п取3.14)。
拓展提高:
若n为正整数,且 ,求
的值.
堂堂清:
1. 若(9 ) =3 ,则正整数m的值为 .
2.若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n1,且为整数)的正方体切成n3个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍.
3. 化简求值:(-3a2b)3 -8(a2)2(-b)2(-a2b),其中a=1,b=-1.
4. 已知xn=2,yn=3,求(x2y)2n的值.
教后反思 这节课又学习了一节新的运算:积的乘方,有了前面学习的过程,那么这几课也采用前面的教学过程,学生接受的还是比较好的。但是学生对于单独的一种运算还可以做的游刃有余,但是对于多种运算在一起的混合运算就有点难度。
同底数的乘法教案篇6
知识目标:
1.使学生掌握“边边边”公理,并会用它证明三角形全等
2.了解三角形的稳定性
能力目标:
3.通过观察几何图形,培养学生的识图能力
4.培养学生的动手能力
情感目标:
5.培养学生勇于创新,多方位审视问题的创造技巧。
重难点:
重点:让学生经历三角形全等的条件的分析和画图验证等过程,了解两个三角形全等应有三个条件。并能从中探索出“三边对应相等的两个三角形全等”,能应用这个条件去判定两个三角形全等和三角形的稳定性。
难点:三角形全等条件的分析与探索。
教具学具准备:
投影仪,细铁丝,直尺
教学过程设计
一、复习提问
1.怎样的两个三角形是全等三角形?
2.全等三角形的性质?
3.完成下表
见课本p152
师:可见,给出任意两个三角形,有些是全等的,有些不是全等的,同学们想不想找到一种方法,用较少的条件来判定两个三角形全等呢?好,下面咱们就一起来找找这些条件。(板书课题:两个三角形全等的条件)
二、新课
1.根据上面表格,小组讨论下面问题
1)在两个三角形中,有一个角对应相等,或一条边对应相等,这两个三角形是否一定全等?有两个角对应相等,或两条边对应相等,或一个角和一条边分别对应相等,情况怎样?有三个角对应相等的情况呢?
2)用来判断两个三角形全等的条件,只有以下三种情况才有可能:三条边对应相等,或两条边和一个角分别对应相等,或两个角和一条边分别对应相等.你认为这种说法对吗?
2.探究活动
分小组活动:
1)用一根长13 cm的细铁丝,折成一个边长分别是3 cm , 4 cm , 6 cm的三角形.把你做的三角形和同学做的三角形进行比较,它们能重合吗?
2)用同一根细铁丝,余下1 cm,用其余部分折成一个边长分别是3cm , 4 cm , 5 cm的三角形,再和同学做的三角形进行比较,它们能重合吗?
3)不同小组用同一根细铁丝,任取一组能构成三角形的三边长的数据,和同桌同学分别按这些数据折三角形,折成的两个三角形能重合吗?
师:通过咱们的试验,可以得出什么结论呢?
生:只要三角形三边的长度确定,这个三角形的形状和大小就完全确定了.
师总结定理:如果两个三角形的三边对应相等,那么这两个三角形全等.
师:咱们试着把这句话压缩一下,用几个字概括,同学们认为什么最合适呢?
生:边边边
师:字母记做“sss”
三角形全等的表示:
1、老师这里有一个镜框,我想把这幅漂亮的风景画装上去,可是镜框很不牢固,你有什么好办法,帮老师把它固定的?
2、你们的办法真多,那就请你动手试一试,人多点子多,以小组合作完成,老师给你们提供材料。
3、请各组代表上讲台展示,拉一拉。
4、你们把支架和镜框订成了什么图形?说明三角形具有什么?(稳定性)
同底数的乘法教案6篇相关文章:
★ 折的写法教案6篇
★ 撇的书法教案6篇