写教案时,教师应确保内容符合课程标准,避免偏离教学目标,教案的存在使得教师能够在课堂上更好地引导学生进行自主学习和探索,好老师范文网小编今天就为您带来了初中数学平行线的性质教案6篇,相信一定会对你有所帮助。
初中数学平行线的性质教案篇1
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
对话探索设计
?探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
?探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
?探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
?探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
?探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
?练习5
p22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
?作业6
p25.1、2、3
?补充作业7
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
初中数学平行线的性质教案篇2
一、教材分析
教材的地位和作用
?平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
教学重难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、教法、学法
教法:
为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
学法指导:
通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、教学过程
1、创设情境引入
在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠b等于142°,第二次拐的角∠c是多少度?为什么?
?设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
?设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
?设计意图】:画平行线的这个过程主要让学生明白确定平行线性质。
前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
?设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。
?设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等、
性质2:两直线平行,内错角相等、
性质3:两直线平行,同旁内角互补、
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识小组交流20页例题
(4)完成导学案上课堂练习
?设计意图】:通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?
?设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、课堂检测
完成导学案上课堂检测习题
设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。
6、作业设计
p24第4、12题
?设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1:例题:练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
?设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
初中数学平行线的性质教案篇3
教学目标:
1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。
教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本p21图5。3—1)。
2、学生测量这些角的度数,把结果填入表内。
角∠1∠2∠3∠4∠5∠6∠7∠8
度数
3、学生根据测量所得数据作出猜想。
(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?
(3)图中哪些角是同旁内角?它们具有怎样的数量关系?
4、学生验证猜测。
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5、师生归纳平行线的性质,教师板书。
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。
性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。
性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。
平行线的性质平行线的判定
因为a∥b,因为∠1=∠2,
所以∠1=∠2所以a∥b。
因为a∥b,因为∠2=∠3,
所以∠2=∠3,所以a∥b。
因为a∥b,因为∠2+∠4=180°,
所以∠2+∠4=180°,所以a∥b。
6、教师引导学生理清平行线的性质与平行线判定的区别。
学生交流后,师生归纳:两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。
7、进一步研究平行线三条性质之间的关系。
教师:大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。
因为a∥b,所以∠1=∠2(两直线平行,同位角相等);
又∠3=∠1(对顶角相等),所以∠2=∠3。
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。
学生仿照以下说理,说出如何根据性质1得到性质3的道理。
8、平行线性质应用。
讲解课本p23例题
三、巩固练习:
课本练习(p22)。
四、作业:
课本p22。1,2,3,4,6。
初中数学平行线的性质教案篇4
一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。
试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?
试验2:学生试验(发印制好的平行线纸单)。
(1)要求学生任意画一条直线c与直线a、b相交;
(2)选一对同位角来度量,看看这对同位角是否相等。
学生归纳:两条平行线被第三条直线所截,同位角相等。
二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。
活动1
问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。
教师活动设计:引导学生讨论并回答。
学生口答,教师板书,并要求学生学习推理的书写格式。
活动2
总结平行线的性质。
性质2:两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3:两条平行直线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
初中数学平行线的性质教案篇5
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
初中数学平行线的性质教案篇6
一、主题分析与设计
本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。
?数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事
3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪??
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容:
①供火车行驶的铁轨上;
②游泳池中的泳道隔栏;
③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图————度量————填表————猜想
学生活动二:画图————剪图————叠合
让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究————小组讨论————成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b(已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1、(抢答)课本p13练一练1、2及习题7。2 1、5
2、(讨论解答)课本p13习题7。2 2、3、4
(五)课堂总结:这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)
⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
(六)作业
学习与评价p5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)
六、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:
①教的转变:本节课教师的.角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。
②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。
③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧
初中数学平行线的性质教案6篇相关文章: