教案通常包括教学活动的详细描述,包括所需的材料和资源,以便教师能够有条不紊地进行教学,我们要借鉴其他教师的教案经验,互相学习,好老师范文网小编今天就为您带来了球与正方体教案5篇,相信一定会对你有所帮助。
球与正方体教案篇1
一、教学目标
1、知识与技能:能够准确识别长方体和正方体,掌握并熟记长方体和正方体的特点以及长方体六个面之间的关系。
2、过程与方法:在观察、操作、体验和交流的过程中培养学生分析、比较、抽象概括能力和初步的归纳能力,发展学生的空间能力。通过观察和比较弄清长方体与正方体的联系与区别。
3、情感态度和价值观:养成敢于探索科学之谜的精神,体验学习数学的乐趣。
二、教学重点
1、认识长方体特征:12条棱、6个面、8个顶点,理解并掌握相互平行的棱长度相等、相对面面积相等。
2、认识正方体特征:12条棱、6个面、8个顶点,理解并掌握12条棱相等、6个面面积相等。
三、教学难点
1、理解长方体棱长总长、正方体棱长总长。
2、对比学习长方体和正方体的特征,弄清长方体与正方体的异同。
四、教材分析
?长方体和正方体的认识》是人教版(20xx)小学数学五年级下册第三单元《长方体和正方体》中第一节的'内容,包括长方体和正方体两个知识,其中长方体含有例1、例2,正方体含有例3。
教材设计意图:重在观察、操作、体验和交流的过程中培养学生分析、比较、抽象概括能力和初步的归纳能力,通过观察和比较弄清长方体与正方体的联系与区别。
五、学情分析
因为学生普遍对空间概念非常陌生,所以学生对新知识《长方体和正方体的认识》理解可能会比较困难。因此唯有联系生活实际入手,由浅入深,逐一穿插学习活动,让学生在观察、观察、操作、体验和交流过程中来分析和比较,从而认识长方体、正方体,最终弄清长方体与正方体的联系与区别。
六、教学过程
(一)创设情境,复习相关知识导入。
1、回顾长方形及正方形。
2、联系生活实际,认识体的空间概念。
(二)师用实物展示法和生交流,初步认识长方体和正方体的量。
1、师分别展示长方体、正方体模型。
2、生认真观察并详细记录观察结果。
3、生可在桌间或小组内交流学习长方体和正方体数量特征。
①长方体有12条棱,8个顶点,6个面(通常都是长方形,特殊2个正方形和4个长方形)。
②长方体有12条棱,8个顶点,6个面(都是正方形)
(三)引导生通过操作、讨论,来理解体会长方体和正方体棱长间的特征。
1、小组合作学习(活动一):
①利用手中的学具,动手制作一个长方体。
②进一步理解长方体的特征:棱长间的区别与联系。
(长、宽、高的定义;相互平行的棱长长度相等)
2、小组合作学习(活动二):
①利用手中的学具,动手制作一个正方体。
②进一步理解正方体的特征:棱长间的联系。
(所有棱长长度相等;统称棱长)
3、对比长方体和正方体棱间区别。
(四)激励生再操作、讨论后归纳长方体和正方体面间特征。
1、生各自独立完成(活动三):
请学生课前剪下教材后的附页,备好长方体和正方体展开图。
①认真观察长方体和正方体展开图,猜想长方体和正方体面间的区别与联系。(有一些面面积相等)
②沿虚线折长方体和正方体,验证猜想。
③初步归纳长方体或正方体特征的异同。
(长方体:相对面面积相等;正方体:所有面面积相等)
(五)师生互动作课堂小结。
1、长方体和正方体的共同点:都有6个面、8个顶点、12条棱。
2、长方体和正方体的不同点:
①长方体:相互平行的4条棱长度相等,相对面面积相等。
②正方体:12条棱长度都相等,6个面都相等。
(六)课外作业
一根绳子既可做一个长6厘米、宽4厘米、高2厘米的长方体框架,又可做一个棱长是多少厘米的正方体宽架?
球与正方体教案篇2
一、教学内容
课本 p27~30 例 1、例 2。
二、教学目标
1.知识与技能
使学生认识长方体和正方体,并掌握它们面、棱、顶点的特征以及长方体和正方体两者之间的关系。认识长方体的长、宽、高和正方体的棱长。
2.过程与方法
让学生经历探索认识长方体和正方体的过程,培养学生观察、操作、抽象、概括的能力,以及发展学生的空间观念和空间想象力。
3.情感、态度与价值观
使学生形成初步的空间观念,体验所学知识与现实生活的联系,能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
使学生认识长方体和正方体,掌握它们的特征;认识长方体的长、宽、高和正方体的棱长。
2.教学难点
了解长方体和正方体的关系。
四、教学用具
自制课件,学具,长方体、正方体的物品。
五、教学设计
(一)复习准备
(视频脚本三:第三单元长正方体:1.2)
1.我们学过哪些平面图形?长方形和正方形有什么关系?
2.出示收集的各种物体:这些图形同刚才的图形有什么不同?
[设计目的是沟通新旧知识间的联系。]
(二)探索新知
1.认识长方体和正方体。
(1)师出示一些教具,学生拿出收集的学具。
将这些物体进行分类,可以分为几类?
(2)学生小组研究汇报:根据围成的面的不同可以分为:由长方形围成和由正方形围成的。(板书:长方体和正方体)
(3)日常生活中你见过哪些物体是长方体和正方体?
(长正方体认识:动画场景1)
(4)长方体有什么特征呢?什么样的物体叫长方体呢?下面我们来继续研究这个问题。
(5)关于长方体你想学习哪些知识?
师拿出长方体教具,学生拿学具,师给出面、棱、顶点、相对的面、相对的棱的概念,并板书。
2.长方体的特征。
(长正方体认识:动画场景3)
(1)长方体有几个面?(6 个)你来猜想一下长方体的面有什么特点?
(2)怎样验证你的猜想?
3.学生验证。
可能会有以下方法:
(1)通过量长和宽计算;
(2)剪下比一比;
(3)将其中一个面描在纸上,用另一个面对比。
4.汇报结论:长方体的 6 个面都是长方形,相对的面面积相等。
有不同的发现吗?(也有相对的两个面是正方形)
5.教师重点带领学生研究相对的面是正方形的长方体。请大家再来仔细观察这个长方体,还有什么特征?
6.长方体的棱有什么特点?怎样验证?
(长正方体框架制作:动画脚本---场景一、二)
7.学生利用学具验证。
(1)测量;
(2)用学具插一个长方体后,再比较棱的长短。
8.汇报:怎样插长方体,用了什么材料?长方体的棱有什么特点?
12 条棱,相对的 4 条棱相等。
9.重点研究相对的面是正方形的长方体的棱的特点。
10.填写总结报告。
11.认识长、宽、高。
(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(2)学生指出自己手中长方体的长、宽、高,并量出长短。
3.正方体的特征。
(长正方体认识:动画场景4)
(1)学生独立研究正方体的特征并填表。
(长正方体框架制作:动画脚本---场景三)
(2)汇报你们是怎样研究的?
4.长方体和正方体的关系。
比较长方体和正方体,它们有什么相同点和不同点?长方体和正方体有什么关系?
相同点:6 个面,12 条棱,8 个顶点。
不同点:
(三)巩固练习
1.下面的图形中,是长方体的在括号里画“△”,是正方体的在括号里画“○”。
2.写出下面各图的名称。
3.观察实物图,然后填空。
(1)橡皮的形状是( )。
(2)橡皮的前面是( )形,长是( )厘米,宽是( )厘米,与( )的面积相等。
(3)橡皮的右侧面是( )形,长是( )厘米,宽是( )厘米,与( )的面积相等。
(4)橡皮的上面是( )形,长是( )厘米,宽是( )厘米,与( )的面积相等。
4.看图填空。(单位:厘米)
长( ) 长( ) 长( )
宽( ) 宽( ) 宽( )
高( ) 高( ) 高( )
5.判断。(对的在括号里划“√”,错的划“×”。)
(1)一张很薄的塑料纸,只有正反两个面。 ( )
(2)正方体是特殊的长方体。 ( )
(3)一个长方体中有四个面完全一样,那么另外两个面一定是正方形。 ( )
(4)用一根长 120 厘米的`铁丝围成一个正方体框架,正方体的棱长为 20 厘米。 ( )
(四)全课总结
在这节课上,使你印象最深的是什么?你还有什么需要解决的问题吗?
(五)板书设计
长方体和正方体的认识
球与正方体教案篇3
活动设计背景
?纲要》指出:“能从生活和游戏中获得有关物体形状、数量等方面的感性经验,并尝试运用已有的知识经验解决日常生活和游戏中某些简单的问题”。因此我认为无论是教育内容还是教育方式,只要能激发幼儿对数学的兴趣,并能与生活息息相关,有益于幼儿发展就值得去尝试。正方体在幼儿生活中随处可见,如药盒、牛奶盒等,然而幼儿对正方体的认识却是模糊的,对大班孩子来说,已经具备了初步的动手操作、逻辑推理能力,因此在幼儿认识正方形的基础上,我设计了这节数学活动,通过幼儿的自由探索将数学教育游戏化、生活化,从而激发幼儿对立体造型的兴趣。
活动目标
1、复习巩固正方形,运用观察比较的方法感受平面形与立体的区别。
2、初步感知正方体,知道它的名称和最显著特征。
3、培养动手动脑能力,体验帮助别人的快乐。
4、引发幼儿学习图形的兴趣。
5、激发幼儿学习兴趣,体验数学活动的快乐。
教学重点、难点
1、重点认识正方体,知道它的显著特征。
2、难点学习按形体的明显特征分类,提高分析、比较、概括的能力。
活动准备
包装盒、正方形卡片、正方体展开图、剪刀、彩笔、胶棒(人手一份)、各种装饰材料
活动过程
一、导入部分:
故事《喜羊羊的礼物》引题,教师讲述故事引起幼儿的兴趣。让我们一起看看喜羊羊的礼物是什么呢?(出示包装盒)里面会有什么呢?一起探索包装盒里的秘密?
二、基本部分:
1、自由探索:和周围的小朋友比较自己的包装盒与别人比有何不同?
2、探索秘密包装盒里的物品(正方形卡纸),复习巩固正方形的特征
3、比较正方形和包装盒有什么相同和不同点?让幼儿自由讨论,教师参与讨论。师幼共同总结正方形是平的,包装盒是有棱角的,而且每个面都是正方形,正方形有一个面,包装盒有六个面。
4、小实验:让幼儿自由想办法,看看包装盒的六个面是否一样大。
5、教师小结,告诉幼儿他们手中的包装盒是正方体的,巩固正方体的'特征。
6、制作数字魔方:师幼共同观察正方体展开图,看一看有几个正方形组成?讨论制作方法,幼儿操作教师观察并及时给与指导。
7、游戏:抛数字魔方(教师抛魔方停下时,看魔方面上是数字几,幼儿就拍几下手或跺几次脚)
8、出示各种包装盒,请幼儿说出哪些是正方体的,哪些不是,为什么?
9、请幼儿说说生活中哪些物体是正方体的。
三、结束部分
1、装饰数字魔方,提醒幼儿注意安全。
2、展示作品。把魔方送给自己的好朋友并说一句祝福的话。
教学反思
本节课我通过比较法、观察法、对比法,让幼儿能直观看到形与体的区别和本质联系,从而了解平面和立体的不同,感知各自的特点,从而解决活动的重难点使活动有效开展。活动开展中,幼儿兴趣浓厚,经过操作比较,能大胆表达形与体的区别,知道体是在形的基础上构成的,而且在拓展环节,幼儿能拓展思维,积极表述生活中那些物品是正方体的,使经验知识得到了进一步的内化。
球与正方体教案篇4
一、教学内容
课本p38~40。
二、教学目标
1.知识与技能
使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。
2.过程与方法
让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。
3.情感、态度与价值观
使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
体积概念的建立以及对体积计量方法的理解。
2.教学难点
感知物体的体积以及建立体积单位的概念。
四、教学用具
1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。
五、教学设计
(一)铺垫选择研究方向
1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。
2.观察思考。
(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)
(1)水面的位置发生了什么变化?杯中的水为什么会上升?
(2)杯中的水为什么会上升,这就是我们今天要研究的内容。
(二)发现并认识体积
1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……
2.教师巡视与学生一起探讨。
3.提问汇报。
(1)你们是怎样进行实验的?
(2)你们在实验过程中观察到了什么现象?
(3)学生动手操作。
(4)学生回答。
生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。
4.表象再现。
(1)闭眼回忆刚才验证物体的样子。
(2)学生闭眼想象。
5.抽象体积的概念。
(1)物体所占的空间一样吗?
(2)学生回答。
生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。
(3)为什么上升的水面会比原来的高?
(4)学生回答。
生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。
6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。
(1)什么叫物体的体积?
(2)学生回答:物体所占空间的大小叫做物体的体积。
7.看书质疑。
(三)自我探索体积单位
1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】
2.猜想。
你听说过哪些体积单位?
(1)常用的体积单位有哪些?
(2)汇报:将你们学习到的说给大家听听。
(3)学生回答。
棱长1厘米的正方体,体积是1立方厘米;
棱长1分米的正方体,体积是1立方分米;
棱长1米的正方体,体积是1立方米。
(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)
3.估量体积单位。
(1)1立方厘米的空间有多大?比画比画。
(2)什么物体的体积大约接近1立方厘米?
(3)1立方分米有多大?比画比画。
(4)什么物体的体积接近1立方分米?
(5)1立方米呢?
(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)
4.填入适当的单位。
(1)橡皮的体积大约是5()。
(2)桌子的体积大约是240()。
5.质疑。
(四)体积的`初步计量
1.教师演示(学生跟着摆)。
(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(3)(改变长方体的摆法)这是长方体吗?它的体积是多少?为什么仍是6立方厘米?
(4)(再改变形状)形状变了,体积有没有变?为什么?
(5)为什么不管摆什么形状,体积都是6立方厘米?
2.学具操作。
(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?
(2)为什么所摆的长方体的体积都是9立方厘米?
3.归纳概括。
(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?
(五)巩固练习
1.填空
常用的体积单位有()、()、()。
常用的面积单位有()、()、()。
常用的长度单位有()、()、()。
棱长()的正方体的体积是1立方厘米。
棱长()的正方体的体积是1立方分米。
棱长()的正方体的体积是1立方米。
2.在括号里填上适当的单位。
(1)一根粉笔的体积大约是10()。
(2)讲台桌的体积大约是0.4()。
(3)一本《新华字典》的体积大约是0.35()。
(4)一张信纸的面积大约是5()。
(5)一块城砖的体积大约是3()。
3.拼一拼,说说是由几个1立方厘米的正方体组成的?
(六)全课总结
通过这节课你有哪些心得和体会?你还有哪些问题?
(七)板书设计
体积和体积单位
意义:物体所占空间的大小叫做物体的体积。
单位:立方厘米、立方分米、立方米。
计量:要看这个物体含有多少个体积单位。
球与正方体教案篇5
教学目标
(一)了解并掌握体积单位间的进率。
(二)理解并掌握体积高级单位与低级单位间的化和聚。
(三)培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点和难点
(一)体积单位进率和单位之间的互化。
(二)复名数和单名数之间的转化。
教学用具
投影片,电脑动画软件(或活动投影片)。
教学过程设计
(一)复习准备
教师:常用的长度单位有哪些?相邻的两个单元之间的进率是多少?
学生口答后老师板书:长度单位
1米=10分米
1分米=10厘米
厘米
教师:常用的面积单位有哪些?相邻的两个单位间的进率是多少?
学生口答后教师板书:面积单位
1米2=100分米2
1分米2=100厘米2
厘米2
口答填空,并说明算法和算理:
4米=( )分米=( )厘米。(算法:进率×高级单位的数。)
500厘米=( )分米=( )=米。(算法:低级单位的数÷进率。)
教师:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的.体积单位间的进率和单位之间的转化。板书课题:体积单位间的进率。
(二)学习新课
1.认识体积单位间的进率。
(1)出示电脑动画图(或抽拉投影片)。
出示棱长1分米的正方体,提问:体积是多少?(1分米3。)
给一条棱涂色,提问:棱长多少厘米?(10厘米。)
1厘米3为单位,一个一个涂,涂满一排,提问:体积是多少?一排一排涂,涂满十排(一层),提问:体积是多少?一层一层涂,涂满十层(即全部涂上)。提问:体积是多少?
(10×10×10=1000(厘米3)。)
教师:由此可知1分米3等于多少厘米3?学生口答后老师板书:
1分米3=1000厘米3
教师:如果把刚才的图理解为棱长1米,即体积为1米3,它的体积是多少分米3?
再请学生看一遍电脑动画图后,学生口答老师板书:1米3=1000分米3。
教师:能说一说相邻的两个体积单位间的进率是多少吗?(1000。)
(2)教师:(指黑板板书)这些是常用的长度单位,面积单位和体积单位及进率,比较它们有什么不同处?(名称、进率两方面。)
2.体积单位的互化。
(1)教师:在日常生活、工作和学习中,经常需要把体积单位进行转化,现在来学习这个问题。
出示例3:(投影) 3.8米3, 0.54米3各是多少分米3?
把问题改写成如下形式:(板书)
8米3=( )分米3
0.54米3=( )分米3
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?如何计算?并说出这样计算的理由。
学生边讨论边试算。然后归纳,老师板书:
因为1米3=1000分米3,8米3有8个1000分米3,列式:1000×8=8000,填8000。
(第2题同上理)1000×0.54=540,填 540。
(2)出示例4:(投影片) 3 400厘米3, 96厘米3各是多少分米3?
改写成算式:3400厘米3=( )分米3
96厘米3=( )分米3
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。
学生试算,讨论后,归纳并板书:
因为1000分米3为 1米3,3400分米3中包含有多少个1000分米3,就有几个米3,列式:3 400÷1000=3.4,填 3.4。
(第2题同上理) 96÷1000=0.096填 0.096。
教师:请对比例3,例4,说一说这两道题有什么不同?
学生讨论后归纳,老师再小结并板书:
(例3下面)高级单位→低级单位,用进率×高级单位的数。
(例4下面)低级单位→高级单位,用低级单位的数÷进率。
教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同。)
(3)*试解下面几题:
①2米380分米3=( )米3;
教师根据学生讨论情况可作提示:哪部分需要转化?没转化的部分如何办?学生口答后
再板书:2+80÷1000=2+0.08=2.08,填2.08。
②5.34分米3=( )分米3( )厘米3;
教师:哪部分可以直接填?哪部分需要转化?(板书)1000×0.34=340,填5和340。
③3.09米3=( )米3( )分米3。
请学生直接说出列式和结果。
老师:从上面三道题的解答中,你们有什么体会?(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化。)
书面练习:(请4位同学写投影片,集体订正)课本p38做一做和补充题。
出示例5:(投影) 一块长方体钢板长2.2米、宽1.5米、厚0.01米。它的体积是多少分米3?
请同学们自己解答。老师巡视中可抽选一名先算出立方米,再化为立方分米,和一名直接算出立方分米的同学去板书。集体订正时由同学自己确定哪种算法较好。
(三)巩固反馈
口答填空,说出计算过程。(投影片)
0.5米3=500厘米3( ) 2.6分米3=2米3 60厘米3( )
(四)课堂总结
1.体积单位的进率。
2.体积单位的转化方法。在学生总结基础上,将例3,例4后归纳的方法汇集成一个,并板书出来:
板书设计
球与正方体教案5篇相关文章: