写教案时,我们应该考虑学生的兴趣,以增强课堂的吸引力,通过共同编写教案,教师能够增强团队自身合作意识,以下是好老师范文网小编精心为您推荐的数学圆的教案5篇,供大家参考。
数学圆的教案篇1
一、教材说明;
九年义务教育六年制小学数学[人教版]第十一册《圆的认识》
二、教学目标;
1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。
2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
3、能正确熟练地掌握用圆规画圆的操作步骤。
4、培养学生动手操作、主动探究、自主发现、交流合作的能力。
三、教学流程;
1、导入新课
(1)学生活动(边玩边观察)。
①球、球相碰玩具表演。②线系小球旋转玩具表演。
[教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]
(2)师生对话(学生可相互讨论后回答)。
教师:日常生活中或周围的物体上哪里有圆?
学生:在钟面、圆桌、人民币硬币上……都有圆。
教师:请同学们用手摸一摸,体会一下有什么感觉?
学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。
教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?
学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的'(指圆)这种图形是由曲线围成的图形。
教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?
学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)
教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……
[这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]
2、探索新知。
(1)探究——圆心
① 徒手画圆。
教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]
②用工具画圆。
教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]
③找圆心。
学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]
教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“o”表示。(学生在圆形纸片上点出圆心,标出字母。)
④游戏趣味题。
在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。
[教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]
(2)探究——圆的直径、半径及其关系。
教师:你还想知道什么?
学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……
数学圆的教案篇2
【教学目标】
知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。
数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。
问题解决:培养学生发现和提出问题,分析和解决问题的能力。
情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。
【教学重点】
掌握圆的面积计算公式,能够正确地计算圆的面积。
【教学难点】
理解圆的面积计算公式的推导过程。
【教学准备】
(1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端,
(2)教具:圆纸片、不同等分的圆卡片
(3)学具:剪刀、圆纸片、不同等分的圆卡片。
【教学过程】
学生课前完成课前导学案(后附课前导学案的内容)
一、课前互动:
师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?
生:越来越接近圆形。
生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。
师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了
师:哪一个图形最特别。
生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。
师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?
生:想。
师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。
二、创设情境,引发问题
师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)
师:看到课题你最想研究什么问题?
(预设)生:什么是圆的面积?
(预设)生:如何求圆的面积?
师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)
?设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。
师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?
(预设)生:圆的大小就是它的面积,
师:说的对,是这一部分的大小吗?(课件把圆填充颜色)
师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。
(课件出示)
师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4
r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?
(预设)生:2个小正方形的面积
(预设)生:3个小正方形的面积
师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。
(预设)生:等于两个正方形的面积之和,也就是2r2,。
师:那么这个圆的面积呢?还要重叠过来吗?
师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?
(预设)生:大约是3r2
师:能确定?为什么不估2r2和4r2
(预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.
师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。
(课件出示)两个正方形的面积<圆的面积<4个正方形的面积
2r2<s圆<4r2
师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。
(平板电脑出示题目和选项:那么圆的面积与它的r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?
a:圆的面积是它的r2的3倍
b:圆的面积是它的r2的3.5倍
c:圆的面积是它的r2的π倍
d:圆的面积是它的r2存在其他的倍数关系
d:圆的面积与它的r2不存在固定的倍数关系)
师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)
师:有30%的同学认为圆的面积是它的r2的3倍
,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!
?设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2
r2与4
r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。
三、启发探究,尝试验证
(一)数格子验证
师:谁来说说你的想法?
(预设)生:可以利用数格子的方法。
(学生的课前研究单上有一个半径是3厘米的圆)
(预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。
师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?
(预设)生:有,这些不满格的要估算。
师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。
(预设)生:会,因为这样需要估算的面积就会越少,所以更准确。
(课件展示)
师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。
师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子
极限思想)
师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?
?设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。
(二)“对折”验证
(预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。
师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?
(预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。
师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?
(预设)生:再对折。
师:折一折,看一看,这条边是不是更直了,再对折看看
(预设)生:太小了,折不了,
师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)
师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。
(预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。
师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)
师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。
?设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。
(三)等积转化验证
师:还有其他的思路吗?
(预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。
师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化
?推导)
师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的`剪拼,请以小组为单位展开探索
活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。
2.比一比,拼成的图形中哪一个更接近于我们学过的图形。
(学生在小组内操作的画面在讲台的一体机中流动显示)
师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)
(预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。
师:为什么会最直呢?
(预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。
师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)
师:谁来讲讲发现。
(预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。
师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)
我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)
?设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。
师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。
(预设)生:自己来。
师:真的,我就站在旁边,有困难就举手。
四、寻找联系、推导公式
要求:
想一想:近似长方形的长和宽与圆的什么有关呢?
试一试:把推导的过程写下来。
师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。
学生分享:
(预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即s圆=c÷2×r。
因为c=2πr,所以s圆=πr×r,s圆=πr2。
师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?
(预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。
?设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。
师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。
师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,
师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即s圆=c÷2×r。
因为c=2πr,所以s圆=πr×r,s圆=πr2。
(板书)
s长方形=长×宽
s圆=周长的一半×半径=c÷2×r=2πr÷2×r=πr2
师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝??
“割圆术”请看。
五、感受数学文化的魅力
(展示魏晋数学家刘徽割圆术视频)
师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。
?设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】
六、巩固知识,实际应用
师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)
1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?
2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?
七、全课总结,课堂延伸
师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)
(预设)生:s圆=πr2
?转化、化曲为直、极限……
师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)
师:对于圆的面积你有什么新的思考。
(预设)生:圆的面积还有其他的推导方法吗?
师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。
八、布置作业
书本第68页做一做的第一题。
(题目:一个圆形茶几的直径是1m,它的面积是多少平方米?)
2、书本71页第4题。
(题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)
3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。
九、板书设计
附录:《课前导学案》
?圆的面积》课前小研究工作纸
班别:
学号:
姓名:
同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……
同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)
2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?
圆的面积小于于()个小正方形的面积
我们可以这样分析:
圆的面积大于()个小正方形的面积
()
3、我们还可以通过数格子的办法数出圆的面积,试试看吧!
图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。
(为了方便数数,你可以在格子中写数字或作记号)
4、圆可以转化成我们学过的图形吗?
(1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?
(2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。
数学圆的教案篇3
教学内容:
教材第5~6页的内容。
教学目标:
1.通过折纸活动,探究并发现圆是轴对称图形,体会圆的对称性,并进一步理解同一个圆里半径和直径的关系。
2.整理已学过的轴对称图形,进一步理解轴对称图形的特征。
3.在活动过程中发展学生的空间观念。
教学重点:
进一步理解同一个圆的半径和直径的关系,并体会圆的对称性。
教学难点:
在折纸过程中体会圆的特征。
教学准备:
教学课件、学生课前剪的圆、长方形等纸片。
教学过程
学生活动
(二次备课)
一、情境导入
师:阳阳利用杯盖画了一个圆,并剪了下来,这个圆的圆心在哪里呢?他想快速找出来,你有什么办法吗?要想解决这个问题,我们还是要看看圆还有哪些特点。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1.动手操作,体会圆是轴对称图形。
组织学生拿出课前准备的圆形纸片,沿直径对折,观察是否完全重合。再沿另一条直径对折看看。让学生多对折几次后,提问:你发现什么了?
生:沿任意一条直径对折,对折的两部分都能完全重合,可知圆是轴对称图形,对称轴是直径所在的直线,而且圆有无数条对称轴。(可能学生说对称轴时容易说成:直径是圆的.对称轴。教师应引导学生知道对称轴是直线,而直径只是一条线段)
教师和学生回顾圆的半径、直径知识,找到所折圆的直径和半径,让学生通过折纸进一步理解:同一圆的半径都相等,直径都相等,直径是半径的2倍。
2.总结学过的图形中哪些是轴对称图形?有几条对称轴?
组织学生利用课前准备的长方形、正方形等纸片折一折,将结果填到教材第5页表格中。然后让学生汇报。
(1)正方形是轴对称图形,有4条对称轴;
(2)长方形是轴对称图形,有2条对称轴;
(3)一般三角形不是轴对称图形,等腰三角形和等边三角形是轴对称图形,等腰三角形有1条对称轴,等边三角形有3条对称轴;
(4)一般梯形不是轴对称图形,等腰梯形是轴对称图形,它有1条对称轴;
(5)教师利用平行四边形纸片折叠演示强调:虽然平行四边形被对角线分成了2个三角形,它们的形状、大小都相同,但它们不能完全重合,所以一般平行四边形不是轴对称图形。
3.引导学生进行折纸活动,找到圆心。
师:我们知道了圆是轴对称图形,对称轴是直径所在的直线,所以开始时的问题:帮阳阳找一个圆的圆心,是不是就容易解决了?
组织学生用“对折再对折”的方法找到圆心,并在小组内交流这样做的想法。
通过学习,学生能够说出:通过对称就能找到直径,而圆心在直径上,所以找到两条直径的交点就是圆心。
4.课件出示组合图形(教材第5页下面图形)。
让学生和同伴交流后找出各图的对称轴。
后面图形的对称轴较多,可能有的学生找不全,教师可引导学生:
因为圆中任意一条直径所在的直线都是它的对称轴,所以可以先找每个图形中多边形的对称轴,如果它正好过圆心,那么它也就是整个图形的对称轴。
四、巩固练习
1.完成教材第6页“练一练”第1题。
独立完成后全班交流。第2个图形容易画错,可以让学生沿对称轴对折一下看是否完全重叠。
2.
完成教材第6页“练一练”第2题。
独立完成后说一说理由。
五、拓展提升
1.判断。
(1)一张圆形的纸,至少对折3次才能找到圆心。(×)
(2)长方形、正方形、圆和平行四边形都是轴对称图形。(×)
(3)圆的对称轴一定经过圆心。(√)
2.用两个圆设计一个只有一条对称轴的图案。
示例:
六、课堂总结
引导学生小结本节内容。
七、作业布置
教材第6页“练一练”第3、4题。
教师根据学生预习的情况,有侧重点地调整教学方案。
学生动手折一折,并和同学说说自己的发现。
学生可以先用手里的圆形纸片摆一摆再画。
点名回答并说出理由。
数学圆的教案篇4
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页圆的认识一。
【教学目标】
1、结合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
3、通过观察、操作、想象等活动,发展空间观念。
【教学重、难点】
1、圆的特征。2、画圆的方法。
【教具、学具准备】
1、三角尺、直尺、圆规。
2、教学课件。
【教学设计】
教学过程
教学过程说明
一、观察思考。
1、欣赏生活中的.圆:棋子、桌面、钟面、车轮、中国结。
2、观察这些图形与我们以前学过的图形有什么不同?
3、生活中还有哪些物体的面是圆形?
4、做套圈游戏,哪种方式更公平?
二、画一画。
1、你能想办法画一个圆吗?
(1)用手比划着画圆。
(2)用一根线和一支笔画圆。
(3)用圆规画圆。
2、教学用圆规画圆的方法。
三、认一认。
学生用圆规画一个圆。
讨论:圆规的尖、圆规张开的两脚之间的长度所起的作用。
告诉学生半径和圆心。
四、画一画、想一想。
1、要求学生画一个任意大小的圆,并画出它的半径和直径。
观察比较得知:圆有无数条直径,无数条半径。
在同一个圆内直径都相等,半径都相等。
2、以点a为圆心,要求学生以a为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
五、讨论。
圆的位置与什么有关系?
圆的大小与什么有关?
数学圆的教案篇5
教学目标:
1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使用工具画圆。
3、培养学生观察、分析、综合、概括及动手操作能力。
教学重点:圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。
教学难点:画圆的方法,认识圆的特征。
教学过程:
一、复习。
1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?
长方形正方形平行四边形三角形梯形
2、示圆片图形:圆是用什么线围成的?(圆是一种曲线图形)
举例:生活中有哪些圆形的物体?
二、认识圆的特征。
1、学生自己在准备好的纸上画一个圆,并动手剪下。
2、动手折一折。
(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母o表示)
(2)再折出另外两条折痕,看看圆心是否相同。
3、认识直径和半径。
(1)将折痕用铅笔画出来,比一比是否相等?
(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)
(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。
4、讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
5、直径与半径的关系。
(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。
得出结论:在同一个圆里,
6、巩固练习:课本58“做一做”的第1-4题。
三、学习画圆。
1、介绍圆规的各部分名称及使用方法。
2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。
四、巩固练习。
1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。
2、判断,并说为什么。
(1)半径的长短决定圆的大小。()
(2)圆心决定圆的位置。()
(3)直径是半径的2倍。()
(4)圆的`半径都相等。()
3、思考题:在操场如何画半径是5米的大圆?
五、布置作业。
教学反思:
在教授《圆的认识》后,有如下反思,希望在今后的教学过程中能扬长短,促进教学。
一、联系生活,体现生活数学。
数学来源于生活,并应用于生活。教师通过引导学生寻找身边的物体哪些是圆形的。课后引导学生探讨车轮为什么是圆形的,不但调动了学生的积极性,加深了学生对圆的认识,而且拉近了数学与生活的距离,使学生深刻体会到身边有数学,伸出手就能触摸到数学,从而对数学产生亲切感,增强学生对学习数学的兴趣和提高学生应用数学的能力。
二、自主探索,培养创新精神。
1、在教学中,学生是学习的主体,在本节课中给学生提供自主探索的机会,引导学生开展合作型的探究性活动,让学生在观察、实验、讨论、交流、合作学习中,理解新知识,使所有学生都能获得成功感,树立自信心。如教学圆心、直径、半径,不急于传授,通过引导学生动手操作折圆,发现圆中心的一点,比一比、量一量、画一画,发现圆的一些特征;通过观察、比较,自主看书,发现同圆中,所有半径都相等,所有直径也相等,半径是直径的一半,直径是半径的2倍,教师适时引导,使学生懂得归纳知识的一般方法,同时学会了观察、实验、操作、发现等学习方法,并伴随新知识的获得,体验到了成功的快乐,增强了克服困难的勇气和毅力。
2、在画圆这个教学片段中我没有像以前一样一边示范,一边讲解圆的画法,我发现很多学生都有画圆的经验了,就借助学生已有的经验,让学生在自主探索中建构。在学生介绍画圆的经验时,我利用动态生成的资源教学,借助学生的实践操作,我很自然地解决了“画圆时,圆心决定圆的位置,圆规两脚张开的大小是圆的半径,圆的半径决定圆的大小”的问题,学生在民主的氛围中学会了圆的画法。
3.应用知识,体验价值。提问车轮为什么要做成圆的,车轴装在哪里?让学生充分发表意见后,教师机演示自制教具车轮,让学生再好奇,愉悦的氛围中明白了车轮做成圆的车就跑的既快又稳道理。这些生活化的问题,对学生既有挑战性又体现了学习的乐趣。正真体现了数学来源生活又服务生活。
不足之处:
1、在本节课画圆的部分,没有在黑板上示范圆的画法,因此并没有规范学生对圆的画法的认识,学生并没有一个直观的感觉,没有创设出一个理解的空间。、
2、本节课小组合作学习的实效性没有完全充分地发挥出来。
3、在尊重学生方面还应注意不能打消学生的积极性
4、圆与点、直线、圆的位置关系还不是很清楚、证明题中还不会找条件。
5、扇形的面积计算还不太熟练,有待于进一步巩固。
数学圆的教案5篇相关文章: