教案的详细准备能够使我们的教学更加有条理和系统,上课之前写教案可以帮助教师反思教学过程,进一步完善自己的教学方法,下面是好老师范文网小编为您分享的分数的混合运算2教案推荐8篇,感谢您的参阅。
分数的混合运算2教案篇1
教学内容:
课本第27页内容及第28页“练一练”的第1~3题。
教学分析:
本课是在学生学习了《分数混合运算(一)(二)》的基础上开始学习的,学生已经基本上掌握了较复杂的分数问题的解决方法,能利用线段图来分析两个数量之间的关系基础上进行学习的。教材通过问题情景让学生应用分数四则运算的意义和计算法则来解决较简单的有关分数的实际问题,在解决问题的过程中,积累解决这类问题的策略和体会分数混合运算的顺序及乘法运算律在分数混合运算中的应用
教学目标:
1.利用方程解决与分数运算有关的实际问题。
2.经历画图分析数量关系、找等量关系、并列方程解答实际问题的过程,培养学生的分析、推理能力。
3.培养学生的节约意识,提高学生学习兴趣,主动解决实际问题的意识。
教学重点:
利用方程解决与分数运算有关的实际问题。通过画线段图解决问题,渗透数形结合的数学思想和方法。
教学难点:
如何根据题意,找出等量关系。
教学法设计:
自主探究、合作交流、尝试练习、归纳总结。
教学具准备:
投影、课件
教学过程:
一、复习导入
1.填一填
①五月份比四月份节约了1/6,五月份占四月份的。
②八月份比七月份增产1/5,八月份占七月份的。
③五年级人数比六年级少1/9,五年级人数是六年级的。
2.说一说下列的等量关系。
①五月份用水20吨,是四月份的6/7.
②跳舞的有24人,占晨练人数的1/5。
③实际投资24万元,占计划投资的7/8.
二、探索新知
1.创设情境,初步感知。
①出示p27主题图。让学生仔细观察主题图,找一找图中的数学信息。
②反馈信息后,让学生提出问题,师板书问题:淘气家8月份用水多少吨?
③分析问题。
引导学生想一想:哪个月用水多?哪个月用水少?你怎么知道的?九月比八月节约了1/7是什么意思?
学生回答后,再带领学生想一想,哪个月的用水量是单位“1”?你能找到它们之间的等量关系吗?
2.画线段图分析数量关系
①学生自主尝试,师巡视辅导。
②展示学生所画线段图,进行评价。
③师生共同完成数量分析,并画出线段图帮助学生理解题意。
画图时,让学生想一想:应先画哪个月份的?为什么?引导学生明白要先画出单位“1”的量,即八月份的线段图,然后再画九月份的线段。
3.结合线段图,找出等量关系。
学生回答,师板书:
八月份用水吨数—节约的吨数=九月份用水吨数
八月份用水吨数×(17)=九月份用水吨数
4.列方程解决问题
①让学生根据以上等量关系列出方程并解答。
②指生板演。
③集体交流,让学生说思考过程。
5.检验
①怎样知道计算结果是否正确呢?学生回答后,让学生进行检验,验证刚才的估算结果是否正确。
②指生说说验证方法。
6.这道题除了可以用列方程解题外,还可以用什么方法?
鼓励学生用多种方法进行解题。12÷(17)=12÷6/7=14(吨)
三、巩固练习(完成“练一练”第1、3题)
1.第1题。
独立完成,集体交流时说说解题思路、计算方法。
2.第3题
四、作业:
1.p28“练一练”第2题。
2.补充:一个饲养场,养鸭1200只,养鸡的只数比鸭多1/6,鸡有多少只?
五、课结
这节课我们学习了什么内容?你有哪些收获?和大家交流一下你的收获。
板书设计:
分数混合运
分数的混合运算2教案篇2
本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。
第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。
第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。
教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。
第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。
一、 一题两解既含运算顺序,又含运算律的内容。
例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。
在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。
比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。
应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。
二、 数形结合教学较复杂问题的数量关系。
例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。
两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的`班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。
练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。
分数的混合运算2教案篇3
数学目标
1.使学生掌握分数四则混合运算的运算顺序,并能正确计算分数四则混合式题.
2.提高学生的逻辑推理能力和计算能力.
3.培养学生认真计算、检验的良好学习习惯.
教学重点
掌握分数四则混合运算的运算顺序.
教学难点
培养学生良好的计算、检验的学习习惯,提高计算的正确率.
教学过程
一、复习引新
(一)口算
(二)说出下列各题的运算顺序.
169-722 35-〔2.34(7.2-5)〕
1.教师提问:整数四则混合运算的顺序是什么?
(1)一个算式里,如果只含有同一级运算,按照从左往右的顺序进行计算.
(2)一个算式里,如果含有两级运算,要先算第二级运算,再算第一级运算.
(3)一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的.
2.教师谈话引入:分数四则混合运算的顺序是怎样的呢?今天我们一起学习分数四则混合运算.
板书课题:分数四则混合运算.
二、讲授新课
(一)教学例1
例1. (课件演示:分数混合运算例1)
1.教师提问:这个算式里含有几级运算?应该先算什么?再算什么?
2.学生尝试解答.
3.集体订正.
(二)教学例2
例2. (课件演示:分数混合运算例2)
1.请学生分组说一说这道题的运算顺序.
计算时,要先算小括号里面的,再算中括号里面的最后算括号外边的.
2.学生独立解答
=
=
=3
(三)先说出运算顺序,再计算.
(四)总结归纳
分数四则混合运算的顺序与整数四则混合运算的顺序相同,我们可能觉得不难,但却很容易算错,所以我们要养成好的计算习惯:要审清运算符号,确定好运算顺序,不丢数、不抄错数,认真计算每一步.
分数的混合运算2教案篇4
教学内容:教科书第80页的例1、“练一练”,练习十五第1—5题。
教学目标:1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2、使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3、使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点:分数四则混合运算的顺序及理解整数运算律在分数运算中同样适用
教学难点:理解整数运算律在分数运算中同样适用
设计理念:本课设计从学生已有的经验入手,利用推移、类比的方法,通过学生自己的尝试、观察发现规律。
教学步骤
教师活动
学生活动
个性修改
一、创设情境。
1、出示教科书第80页的例题图。提问:要求“两种中国结各做18个,一共用彩绳多少米?”这个问题,可以怎样列式?
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2、集体交流。根据回答板书算式。
×18+×18 (+)×18
追问:列式时你是怎么想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)
独立列式解答
口答算式,并说一说是怎样想的
二、教学分数四则混合运算的运算顺序。
1、谈话:根据以上计算整数、小数四则混合运算的.经验,想一想,分数四则混合运算的运算顺序是怎样的?
你会计算上面这两道式题吗?
学生分别计算,并指名板演。
2、提问:这两道式题的计算结果相等吗?运算顺序呢?第一道算式先算什么?第二道算式呢?
3、小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
4、做“练一练”第1题。让学生先说出运算顺序再计算,然后交流、订正。
猜一猜分数四则混合运算
两名学生板演,其余独立完成
口答运算顺序
说出运算顺序再计算
三、教学把整数的运算律推广到分数。
1、引导:我们再来仔细观察例1的两种解法。比较一下,这两种解法之间有什么联系?哪一种方法比较简便?你有什么想法?
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2、做“练一练”第2题。先让学生独立计算,再讨论分别应用了什么运算律或运算性质?
小组交流两种解法之间有什么联系
两名学生板演,其余独立完成
四、巩固练习。
1、做练习十第1题。
让学生按要求直接写出得数,再集体订正。
2、做练习十第2题。
让学生独立计算,再选择一两题要求说说运算顺序。
3、做练习十第3题。
让学生独立计算,然后说说每道题分别应用了什么运算律或运算性质。
4、做练习十第4、5题。
学生独立解答后,指名说说解题思路。
直接写出得数
独立计算
独立计算
五、评价总结。
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
说一说学到了什么
六、作业
分数的混合运算2教案篇5
?分数四则混合运算》,是学生学习整数、小数四则混合运算,分数加、减、乘、除法作为基础进行教学的;是把整数四则混合运算的运算顺序和运算律推广到分数上的,为以后解决简单的实际问题做好准备。因此我在教学时直接引导学生回顾四则混合运算顺序,并说明运用这些四则混合运算顺序学会解答了分数四则混合运算。这样引入让学生觉得新知不新,没有学习难度。
本节课学习分数四则混合运算主要采用自主探索教学法,激发兴趣,启迪思维,引导学生自己探索知识,并重视对学生在计算习惯方面的培养。
成功之处:
一是借助具体情境。让学生感受到分数四则混合运算在生活中的实际应用,并通过具体情境,让学生自主参与到新知的学习过程中来。首先我请两名不同做法的学生上黑板板演。比较两名学生计算方法后,及时小结出分数四则混合运算乘除法连在一起时可同时一起算。要注意检查第一次约分后所剩下的分母分子是否还能约分,直到分母分子不能约分后才能计算。
二是精心创编计算题。分数四则混合运算对于一个五年级的学生来讲,他们都会做,但真正准确率很高的学生却不是很多。因此我在教学中精心创编了一些具有典型特点、学生易错的'习题。学生通过多种形式的练习,在数学学习过程中发现应用运算顺序和运算定律计算时,要合理选择才便于计算结果正确,并形成合理利用运算定律进行运算的意识和掌握一些计算技巧。
三是重视计算习惯的培养。学生养成良好的计算习惯是提高学生计算能力的有效途径。我在教学时不仅注重训练学生掌握灵活的计算技巧,更注重要求学生在做每一道计算题时,首先不能把题抄错;其次要认真观察数据的特点;最后不能忽视书写格式。
分数的混合运算2教案篇6
上课时间:4/28
教学内容:83页例2、“练一练”,练习十五的第1—4题
教学目标:
1、使学生联系具体的问题情境,理解并掌握分数加减混合运算的运算顺序,能正确进行分数加减混合运算。
2、使学生能运用分数加减解决一些简单的实际问题,进一步提高解决实际问题的能力,发展数学应用意识。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重点:能正确计算分数加减混合运算
教学过程
一、口算
1/4+1/3 5/9—2/3 1/2+1/6 3/4—5/8 1/6+3/10
9/14—1/2 3/8+1/8 5/9—2/9 7/10+5/10 3/10+3/4
二、探究
1、出示题目,理解题意。
红山小学校园里有一个花园,其中月季花的面积占1/4,杜鹃花的面积占1/3,其余是草坪。草坪的面积占几分之几?
“月季花的面积占1/4,杜鹃花的面积占1/3”,都是把哪个量看作单位“1”的?
2、根据题意,列出算式,并说算式意义。
1-1/4-1/3 1-(1/4+1/3)
3、在书上独立完成两个算式的计算,再交流计算方法与结果,明确:分数加减混合运算的运算顺序是和整数加减混合运算的运算顺序一样的。
三、巩固
1、练一练
(1)计算下面各题。 5/9+2/3—2/5 1—(1/2+1/6)
(2)我国约有7/10的人口在农村,其余的在城市。城市人口大约占全国人口的几分之几?
独立完成,校对交流,明确算式的意义。
2、练习十五第1题
3/4—5/8+5/6 4/5—(1/6+3/10) 3/7—(9/14—1/2)
(1)学生独立计算,三人板演。
(2)校对交流,特别要注意比较各种方法的优劣。
(3)教师小结:分数加减混合运算的'运算顺序与整数相同,参加运算的几个分数,可以分步通分,分步计算;也可以一次通分,再计算。中间过程中的分数,如果先约分再参加运算比较简便,就及时约分。怎样算简便就怎样算。
3、练习十五第3题
理解题意后,解答前面两个问题。 鼓励学生根据题中已知条件提出用分数加减法计算的不同问题,可以是一步也可以是两步计算的,并让学生尝试解决提出的一些问题。
4、练习十五第2、4题 学生独立完成后交流校对。
四、总结
这节课学习的是什么内容?你能把计算分数加减混合运算的经验和体会说给其他同学听听吗?
分数的混合运算2教案篇7
一、教材分析:
今天我说课的内容分数四则混合运算是青教版五年级上册第八单元中国的世界遗产——分数四则混合运算的第一课时,本单元是学生在熟悉了整数、小数四则混合运算的运算顺序,分数的意义和四则运算的基础上学习的,是继续学习百分数、比和比例等知识的重要基础,本节课是本单元的起始课,为学习稍复杂的有关分数的问题打下基础。
目标定位:
1、能结合具体情景,理解和掌握分数四则混合运算顺序,并能够正确计算。
2、在解决问题的过程中,提高学生分析问题的能力。
3、让学生领略中国的古老和文明,激发学生学习数学的乐趣。
重点、难点:
在解决问题的过程中,理解和掌握分数四则混合运算的顺序,并能正确计算。
二、学情分析:
五年级的学生已经有了整数相关的知识基础,并且已经有了分析相关问题的能力,利用类推迁移,学生完全有能力解决本节课所设计的问题,理解和掌握分数四则混合运算的顺序。
三、教法:
针对以上的分析,结合本课时内容,整个教学思路是这样的:
1、充分体现算与用的关系,体现数学与生活的联系。本课努力贯彻“以学生为主体”的教学思想,从学生已有的是认知基础和生活经验出发,充分利用教材中创设的情境,引导学生自主提出问题解决问题,让学生在解决问题的过程中,把解决问题和计算有机地结合起来,结合生活实际理解掌握分数混合运算的顺序,并在解决实际问题的基础上体会数学的'应用价值。
2、充分发挥学生的主体地位,培养学生的问题意识,引导学生积极主动地探索解决问题的思路与方法,注重学生思维方法的渗透。
学生独立提出问题,独立思考,独立解决,然后在全班交流。不同的孩子有不同的解题思路。学生运用自己的方法解决问题,会对解决数学问题有深切的体验,会取得学习数学的经验。在这个过程中关注学生能否清楚表达自己的解题思路,能否对自己的列式做出解释,培养学生数学思维的发展,提高学生的数学思维能力。
3、练习的设计关注学生的个人差异。
关注每个孩子的能力、基础,针对不同层次的孩子,注重学生的差异,对同样的练习,做不同的要求,使不同程度的孩子都有成功的学习体验。
4、注重培养学生的迁移类推能力。
由于学生已经学习了整数的四则混合运算,并且已经有了解决简单的分数乘除法问题的能力,所以教学中引导学生在已有知识基础上进行类推。这样有利于培养学生的迁移能力,调动学生学习的积极性和主动性。
四、教具、学具准备:
多媒体、课件
五、教学过程:
1、创设情境
本课时是以中国的世界遗产为题材,展现了中国的悠久历史和灿烂文化,为了让学生对世界文化遗产有更深的了解,课前布置让学生查阅相关的资料,上课前交流,并用课件播放相关图片让学生欣赏,不仅让学生借此领略中国的古老和文明,激发学生的学习兴趣,并且随后交流关于故宫有多大的一些信息,以“想不想知道故宫的面积”这一问题,激发学生的探究欲望,吸引学生积极主动地投入到解决问题的探索活动中来。
2、提出问题解决问题
在学生急切地想知道故宫的面积时,师出示相关信息,让学生阅读信息,并且独立思考,引导学生分析,“要解决这个问题,哪条信息最关键?和谁有着怎样的关系?”在此基础上让学生独立解决,更好地体现和发挥学生的主体作用,使之获得个体发展。
汇报交流时,注重学生能否完整地说自己的思路“先求什么,再求什么?”不仅训练学生分析问题的思维,而且在解决问题的过程中体验到运算顺序,突出了重点。学生解决了这个问题,师要照应前面的问题,适时评价:同学们很棒,自己求出了故宫的面积,下次再到故宫,你都可以当一个小导游了。让学生不仅有成功的体验,而且体会数学与生活的密切联系。在此基础上,引导学生观察算式特点,总结板书课题,让学生自主提出问题,并通过知识类推,同位交流,发现分数四则混合运算顺序与整数相同,最后及时出示两道题练习巩固。在这个过程中,不仅注重思维方法的训练,同时通过自主思索与同位交流相结合的方式,培养学生的迁移类推能力。
分数的混合运算2教案篇8
教学目标:
1、在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2、通过让学生小组合作、说一说,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3、创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
重点:
掌握分数四则混合运算的运算顺序。
难点:
明确整数的运算定律和运算性质对分数同样适用。
教具准备:
课件。
教学过程:
一、创设情境谈话导入
谈话:上午,我们度过了另人难忘的感动时刻,现在让我们怀着感恩的心来感受祖国的怀抱,追随我国的世界遗产探究分数的奥秘。同学们,我国的世界遗产你去过那里?(生说)今天,请跟老师一起走进天坛。我们来比一比,看谁能在看完之后最先给出答案。(课件出示视频,问题:天坛比紫禁城多多少万平方米?)
(1)独立解答
生汇报:273—273÷3
=273—91
=182(万平方米)
答:天坛比紫禁城多182万平方米。
(2)小组合作
师:这道题的运算顺序是什么?同桌之间说一说整数的运算顺序。
生说师巡视。
(3)生单独汇报
师:谁把知道的说给大家听?(生汇报)
二、自主探究获取新知
(一)分数混和运算的顺序
谈话:老师这里还有些关于天坛的资料,我们来了解一下。
1、课件出示教科书103页天坛、故宫的情境:
齐读,你知道了什么?根据这些数学信息你能提出什么数学问题
(1)北京故宫的占地面积大约是多少公顷?
(2)北京天坛的占地面积比故宫多多少公顷?
师:同学们,我们把第二个问题先放在问题口袋里,我们先来解决“北京故宫的占地面积大约是多少公顷?”
2、师:想一想,要解决的这个问题与哪些信息有关?
3、师:怎样理解“比天坛公园的1/4多4公顷”。(独立解答)
4、师:谁愿意到前面来汇报一下?
让学生到前面展示不同的方法,并分别说出自己的解题思路。
(1)272×1/4=68(公顷)68+4=72(公顷)
先算天坛公园占地面积的1/4是多少,再算故宫的。占地面积。
(2)272×1/4+4
=68+4
=72(公顷)
学生交流解题步骤。
点题:同学们,你们看在272×1/4+4这个算式中有几种运算?(乘法、加法)
像这样,在一道含有分数的算式中,有两种或两种以上的运算,称为分数四则混合运算。
(5)小组探究
在这个算式中,先算乘法,再算加法,猜想:这和整数四则混合运算的顺序一样吗?课件出示含有除法、减法、带小括号的分数四则混合运算。小组合作探究得出结论:分数四则混合运算的顺序和整数四则混合运算的顺序一样。
(二)整数运算律在分数运算中同样适用
1、情景引导问题
师:刚才同学们解了天坛、故宫,其实我国的世界遗产还有很多,我们一起来欣赏一下吧。(课件出示:遗产视频。)
结束后出示教科书103页世界遗产信息图。
学生独立解决。
提示:在这里把谁看作单位“1”?把我国拥有的世界遗产数量30处看做单位“1”;7/10、2/15怎样都表示在单位“1”的线段图中。
全班交流,展示做题方法。
(1)30×7/10+30×2/15(2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处)=25(处)
方法(1):先算我国的世界文化遗产和自然遗产各有多少处,再算一共有多少处。
方法(2):先算我国的世界文化遗产和自然遗产一共占我国的世界遗产总数的几分之几,再算我国的世界文化遗产和自然遗产一共有多少处。
老师有一个问题想问同学们,观察一下30×7/10+30×2/15和30×(7/10+2/15)这两个算式,用到了我们学过的什么运算律?(乘法分配律)这说明什么?
整数运算律在分数中同样适用。
三、巩固练习,加深理解。
刚才我们一起学习了分数四则混合运算,你会解决这类问题了吗?现在老师想考考大家,敢不敢接受挑战?
课件出示练习题。
试试能不能独立完成。
完成的同学,谁来说一说你的解题思路。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
最后让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课件:课本76页第9题。学生读题,指生列式。
五、谈收获
这节课学到这里,你有什么收获?还有哪些疑问吗
分数的混合运算2教案推荐8篇相关文章: